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We have developed a plane-wave transfer-matrix method �PWTMM� to analyze light propagation through
sharp photonic crystal bend structures. With the aid of the supercell technique, the original aperiodic wave-
guide bend can be modeled by a periodic scattering problem of two semi-infinite photonic crystal waveguide
arrays face to face or two semi-infinite photonic crystal waveguide arrays separated by a sandwiched slab of
bend region. The proposed approach has been applied to several sharp bend structures in two-dimensional
photonic crystals. The calculated transmission and reflection spectra of the waveguide mode are in good
agreement with existing results made by other numerical methods, even at the frequency close to the wave-
guide cutoff frequency. The developed PWTMM only needs to handle a single unit-cell layer domain and is
therefore numerically friendly. The proposed approach can become an efficient and accurate numerical tool to
understand and design high performance sharp waveguide bends in different two-dimensional and three-
dimensional photonic crystals with complex geometries.
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I. INTRODUCTION

The efficient guiding and interconnection of light on a
chip are of vital importance in telecommunication and com-
puting applications. Conventional dielectric waveguides are
restricted by radiation loss to a moderate bending radius al-
though they can support guided modes along straight lines
with high efficiency. In recent years, photonic crystals,1–6 a
class of material with a periodic distribution of dielectric
function, have attracted extensive interest in the fundamental
physics and potential applications to high technology. They
allow one to mold the propagation of photons through pho-
tonic band gaps.7,8 This can be explored to create future
electro-optic or all-optical ultrasmall integrated optical cir-
cuits because of the peculiar propagation behavior of elec-
tromagnetic �EM� waves in defects introduced into photonic
crystal �PC� structures. Some of the basic functional ele-
ments comprising the photonic crystal integrated circuit are
PC waveguides, branches, and cavities.9–15 A linear defect in
a photonic crystal can create a localized mode when the fre-
quency of a guided mode lies within the photonic band gap.
The efficient confinement and propagation of EM waves
through straight lines, sharp bends, and multibranches can be
achieved without relying on the total internal reflection.9

Both extensive theoretical and experimental studies have
been made toward the goal of deeply and fully understanding
the propagation behavior of EM waves through linear
waveguides and waveguide bends created in two-
dimensional �2D� photonic crystals,9,10 2D photonic crystal
slabs,11–14 and three-dimensional �3D� photonic crystals.15–19

A waveguide bend is composed of two nonparallel
straight waveguides connected by a designed cross section of
sharp bending structure. Because this structure does not pos-
sess periodicity along any direction, the conventional plane-
wave expansion method20,21 and transfer-matrix method22,23

designed for a periodic photonic crystal cannot be used to
understand the EM-wave propagation behavior through a
waveguide bend. Instead, as the finite-difference time-

domain �FDTD� method24 is applicable to a general aperi-
odic structure, it is employed almost exclusively by many
groups due to its simplicity in essence and simplified com-
putational storage requirements.9–15 However, structural
boundaries such as the existence of the waveguide exits and
bend present in the FDTD simulations can result in multiple
reflection phenomena. Because of this, the FDTD simulation
is subject to two major difficulties. First, a very large simu-
lation domain size must be adopted in order to separate suf-
ficiently the useful pulses and parasite multiple reflection
pulses from two waveguide exits and obtain reasonable in-
formation on the transmission and reflection spectra for the
bend. Without sufficient separation, the transmission and re-
flection pulses cannot be discerned without any ambiguity,
and accurate and reliable spectrum information cannot be
extracted. Second, near the waveguide cutoff frequency,
there are strong fluctuations in the transmission and reflec-
tion spectra calculated by the FDTD technique. As high as
120% transmissivity can be found at some definite
frequencies.9,15 This oscillation is mainly ascribed to the
widening of the long-wavelength component during the
propagation process of pulses along the waveguide. This
widening results in overlaps among the useful and the para-
site pulses. Therefore, strong oscillation occurs when one
tries to separate these pulses. To solve these problems in the
usual FDTD simulations, sophisticated absorbing boundary
conditions25,26 have been deliberately designed to reduce
spurious reflected pulses. This approach has to ensure that
the perfectly matched layers perform equally well for all in-
cidence directions and all k wave numbers included in the
wave packet. Recently, other frequency-domain theoretical
approaches beyond the FDTD technique have been devel-
oped in literatures to calculate the propagation of EM waves
through sharp bends of photonic crystal waveguides. These
include the eigenmode examination method,27 the Wannier-
basis field expansion method,28,29 the multiple multipole
method,30,31 and the finite-element method.32,33 These meth-
ods can overcome the numerical difficulties encountered in a
usual FDTD simulation.
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In this work, we propose a approach that is physically
simpler, numerically friendly, and quantitatively accurate to
investigate EM wave propagation through sharp photonic
crystal waveguide bends and the corresponding spectrum in-
formation. Our method is based on the plane-wave transfer-
matrix method �PWTMM� that has recently been extensively
utilized to study EM wave scattering at general photonic
crystal interfaces.34–39 The method can handle both 2D PC
structures �at both TM and TE polarization modes� and 3D
PC structures.34–36 In addition to the routine solution of band
structures for an infinite photonic crystal and transmission
spectrum for a finite-length slab of photonic crystal, this
method has been developed to allow a solution of the wave
scattering problems of semi-infinite PC structures without
any difficulty of multiple reflection at the PC interfaces.37–39

It has been well known that such difficulty usually exists
in FDTD simulations and can only be removed with great
caution by deliberately designed absorbing boundary
conditions.25,26

This paper is arranged as follows. In Sec. II, we discuss
how to adopt the basic idea of PWTMM to handle the wave
propagation through aperiodic PC waveguide bends. In Secs.
III and IV, we take several examples of 2D PC waveguide
bend structures to address the efficiency of the proposed
method. In Sec. IV, we further discuss how to construct an
optimal supercell model to reduce the numerical computation
burden of PWTMM in application to a general PC wave-
guide bend. In Sec. VI, we summarize this paper.

II. EXTENSION OF PLANE-WAVE TRANSFER-MATRIX
METHOD TO PHOTONIC CRYSTAL WAVEGUIDE

BENDS

As we have discussed in Sec. I, there exist two major
difficulties that obstruct accurate FDTD simulations of PC
waveguide bends. One is the multiple reflection at the wave-
guide exits, the other is the overlap between the incident and
reflection pulses, and overlap between the transmission and
parasite reflection pulses from the exits. In other frequency-
domain methods, the major difficulty is to extract the coeffi-
cient of the reflection and transmission mode from the total
field distribution. The best way out of these difficulties is to
consider two infinitely-long waveguides connected through
the sharp waveguide bend because no multiple reflection due
to the waveguide exits will be present in such model
structures.37–42 Recent studies show that PWTMM can be an
ideal numerical tool for this task because this method can
handle intrinsic eigenmode scattering at any complex struc-
ture composed of two semi-infinite PC structures and related
PC waveguide structures when the usual supercell technique
is incorporated.37–39

The basic point of PWTMM is that any EM field can be
represented by plane-wave functions that are associated with
a particular periodic lattice. In this aspect, it seems that the
current PC waveguide bend structure cannot be handled by
PWTMM due to the lack of periodicity in the waveguide
bend along any direction. However, when we consider that
the sharp waveguide bends are formed by two semi-infinite
PC waveguides face to face or by two semi-infinite PC

waveguides connected through a general slab structure �bend
section�, things become different. The originally aperiodic
bend structure can now be incorporated with the usual super-
cell technique and then modeled by wave scattering problem
in periodic structures. As a result, it turns out that PWTMM
is applicable in solving the wave scattering problem of the
aperiodic PC waveguide bend structure.

To see how this can be possible, we take as an example
and look at a 2D PC waveguide bend structure built in a
square lattice of dielectric rod embedded in the air back-
ground. As schematically depicted in Fig. 1�a�, the structure
is a 90° sharp bend composed of two straight waveguides.
Because only waveguide modes localized around the wave-
guide central axis are considered, we can introduce other
artificial waveguides that are parallel to the original input
and output waveguides. The situation is depicted in Fig. 1�b�.
Note that the 2D photonic crystal is periodic in the YOZ
plane and homogeneous along the x axis. The stacking direc-
tion of the cylinder is along the z axis �along the �M direc-
tion of the square lattice�. In this direction, each layer be-
haves like a one-dimensional �1D� diffraction grating that is
perfectly periodic along the y axis. The 1D grating has a
period of �2a, with the primitive lattice vector being a�2
= ��2,0�a, where a is the lattice constant of the crystal. An-
other primitive lattice vector along the z-axis direction is
a�3= �

�2
2 , �

�2
2 �a for the left-side and right-side photonic crys-

tals, respectively. For more details on how to use PWTMM
to solve the band structures and transmission spectrum for
this 2D photonic crystal, the readers are referred to Refs. 34
and 35. A supercell depicted in Fig. 1�b� consisting of up to
m unit cells centered at the axis of the waveguide has been
adopted. The primitive lattice vector of this supercell is a�2

= ��2m ,0�a and a�3= �
�2
2 , �

�2
2 �a for the left-side and right-

side waveguide arrays, respectively. When the distance be-
tween two adjacent parallel auxiliary waveguides, which is

supercell

y

Z

FIG. 1. Schematic diagram of the supercell technique used to
handle the EM-wave propagation behavior through a 2D PC wave-
guide bend. The original aperioidc waveguide sharp bend problem
is converted into a periodic waveguide array scattering problem.
The photonic crystal is periodic in the YOZ cross-section plane and
homogeneous along the x axis.
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�2ma, is large enough so that leakage of EM waves from one
waveguide to the other is negligible, the existence of all the
auxiliary waveguides do not bring any impact to the original
wave propagation problem in regard to the transmission and
reflection of waveguide modes at the sharp bend. If the par-
allel waveguides have equal lateral spacing, then the whole
structure is simply composed of two semi-infinite periodic
waveguide arrays face to face and in touch with each other or
two semi-infinite periodic waveguide arrays connected
through a slab of the sharp bend array. Now, it becomes clear
that the original aperiodic bend structure has been modeled
by a periodic structure of sharp bend supercell, to which all
the theoretical formulation and numerical techniques of
PWTMM can be readily applied.

The first practical systems we investigate are waveguide
bend structures created in a 2D photonic crystal consisting of
a square lattice of dielectric cylinders in air. To make a good
reference to existing results in the literatures, we take exactly
the same parameters as those reported in Ref. 9, The refrac-
tive index of the rod is 3.4, corresponding to GaAs at the
canonical wavelength of 1.55 �m, and the radius of the cyl-
inder is r=0.18a, where a is the lattice constant of the crys-
tal. There is a wide fundamental photonic band gap between
the first and second bands for a perfect lattice under TM
polarization �where the electric field is parallel to the cylin-
der axis�. A waveguide can be generated by simply removing
one row of cylinders in an otherwise perfect lattice, which is
called a W1 waveguide. This waveguide supports a single-
mode waveguide state within the band gap. The geometrical
configurations of the two different waveguide bend struc-
tures that we study in this work are schematically displayed
in Figs. 2�a� and 2�b�. Here, the coordinate of the system is
set in accordance with the PWTMM, where the stacking di-
rection of the PC unit-cell layer �from left to right� is set to
be the z axis, which is just the �11� direction of the square
lattice, and the lateral periodic direction is set to be the y
axis. The two 90° bend structures are formed by connecting
a �10� direction straight waveguide �along the �X direction
of the square lattice� and a �01� direction straight waveguide
�along another �X direction�. The only difference between
these two structures is the position of a single cylinder lying
right at the corner of the bend region. The bend in Fig. 2�b�
can be assumed to have zero radius of curvature. The propa-
gation behavior of these two bend structures has been studied
in detail in Ref. 9 by means of the FDTD technique and,
later, by other frequency-domain methods.25–33

We can now apply the PWTMM to solve the wave scat-
tering problem of the sharp bend structures. Because semi-
infinite PC waveguide array structures are considered, the
intrinsic transmission and reflection coefficients of an input
waveguide mode at the sharp bend can be calculated follow-
ing the basic procedures that have been described in detail in
Ref. 35. The major processes are basically as follows. First,
we denote the left and right semi-infinite PC waveguide ar-
ray structures as PC1 and PC2, respectively. Second, we
solve the eigenmodes �including eigenvalues and eigenvec-
tors� of the two supercell photonic crystals in the plane-wave
space and write the EM fields in the form of eigenmode
superposition. Note that the eigenmodes are associated with
the unit-cell transfer matrix and involve both propagation

and nonpropagation modes. Physically, one of these eigen-
modes must be the waveguide mode of the straight PC wave-
guide. Third, we match the boundary conditions of EM fields
at the boundary of the two PCs, which might directly touch
each other face to face or be separated by the central sand-
wiched slab. From this, we can find the relation between the
transmission eigenmode coefficients �in PC2�, the reflection
eigenmode coefficients �in PC1�, and the incident eigenmode
coefficient �in PC1�. Fourth, we solve the linear simulta-
neous equations and find all the unknown eigenmode coeffi-
cients. From this, we can straightforwardly calculate the
transmission and reflection coefficients of an incident eigen-
mode �the waveguide mode� due to the sharp bend. If the
PCs have multiple propagation eigenmodes that carry energy
fluxes, then we encounter a multimode structure problem.
The scattering coefficient of an incident eigenmode into a
particular eigenmode �either reflection eigenmode in PC1 or
transmission eigenmode in PC2� can also be directly ob-
tained from the PWTMM calculation.36

Although the general procedures of a theoretical analysis
are similar to those in Ref. 35, things are slightly different
now. In Ref. 35, only normal incidence problems are dis-
cussed. In this case, the parallel Bloch-wave vector ky �which
is a conservative quantity and an input parameter in the
PWTMM calculation� is exactly zero. It is then very conve-
nient to find all the eigenmodes �represented by the perpen-
dicular wave vector kz� corresponding to a given frequency �
following the general procedure of PWTMM.34 In the cur-
rent sharp waveguide bend structure, the incident waveguide
mode, which should be the eigenmode of PC1, propagates
along the waveguide in a direction that is 45° inclined with
the stacking direction of the PC unit-cell layers. Let us de-
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FIG. 2. Geometrical configuration of two different 90° wave-
guide bend structures introduced into a square lattice of dielectric
cylinders in air. Each waveguide is created by removing a single
row of cylinders in an otherwise perfect lattice. The cylinder has a
refractive index of 3.4 and a radius of r=0.18a. These two struc-
tures are modeled by two semi-infinite photonic crystal waveguide
arrays �photonic crystal 1 and photonic crystal 2� face to face in
touch �b� or by two semi-infinite photonic crystal waveguide arrays
�photonic crystal 1 and photonic crystal 2� connected through the
central sandwiched slab �a�. The eigenmode scattering problem can
be solved to yield the transmission waveguide mode �0

+ and the
reflection waveguide mode �0

− under an input waveguide mode �0
+.
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note the incident Bloch-wave eigenmode �the waveguide
mode� as �0

+, which is characterized by parameters
�� ,ky ,kz�. When this mode obliquely impinges on the inter-
face between the semi-infinite photonic crystal PC1 �left�
and the semi-infinite photonic crystal PC2 �right�, one part of
energy power is reflected back and evolves into another
Bloch-wave �0

− �the reflection waveguide mode� and the
other part of energy power transmits through the interface
and evolves into a Bloch-wave �0

+ in PC2 �the transmission
waveguide mode�.

To employ the PWTMM for a solution of the transmission
and reflection spectra of the sharp bend, we need to first
determine all the eigenmodes of the waveguide arrays �PC1
and PC2� accurately and pick up from these eigenmodes the
single propagation mode that corresponds to the waveguide
mode of the original W1 PC waveguide under the oblique
incidence situation. To achieve this goal, we first accurately
compute the eigenmodes of the guided modes in the straight
waveguides by means of the PWTMM in combination with
the supercell technique. As we have mentioned above, in the
PWTMM solution to the eigenmodes in the first Brillouin
zone of a photonic crystal, the eigenfrequency � and the
lateral Bloch-wave vector ky are explicitly given as input
parameters and kz is left to be determined from the unit-cell
transfer matrix. The PWTMM is most numerically economi-
cal to compute the photonic band structure parallel to the
layer stacking direction ��=0° �.37 However, the Bloch-wave
�0

+ �with k� = �ky ,kz�� under the current problem of the 90°
sharp waveguide bend lies at an oblique angle of �=45° with
respect to the stacking direction. We have to project the
Bloch-wave vector onto the layer stacking direction ��
=0° � and obtain the lateral Bloch-wave vector in this direc-
tion, which is ky. Then, we calculate the dispersion along the
layer stacking direction of the photonic crystal and find out
the eigenmodes in the neighboring region of kz, which are
denoted as �kzi� ,�i� �i=1,2 , . . . ,n� for a series of frequency
points �. Matching kzi� to the prefixed value of kz �which is
equal to ky in the current problem� through the interpolation
technique, we can pick up the exact value of eigenfrequency
� that corresponds to the Bloch-wave �0

+, namely, an eigen-
mode propagating along the original waveguide direction.
We have checked the band structure of the waveguide as well
as the eigenmode field profile and energy flux of the wave-
guide mode by the above numerical technique by comparing
them to the PWTMM calculation results for the same straight
waveguide under a normal incidence situation where ky is
zero, which can be very precise without any troublesome
interpolation technique. A very excellent agreement has been
found, which verifies the efficiency and accuracy of the pro-
jection and interpolation method.

Now that we have obtained the exact waveguide mode
solution of �� ,ky ,kz�, we take them as input parameters and
calculate all the eigenmodes of PC1 and PC2 under the given
oblique angle. With these eigenmodes at hand, we directly
follow the procedures of the PWTMM and calculate the co-
efficient of the reflection waveguide mode in PC1 and the
transmission waveguide mode in PC2 by considering Bloch-
wave eigenmode scattering at the interface of two semi-
infinite PC structures in touch face to face or by considering
Bloch-wave eigenmode scattering at the interfaces of two

semi-infinite PC structures connected with a general slab
sandwiched between them.37 The intrinsic transmission and
reflection spectra of the input waveguide mode by the sharp
bend structure can be directly obtained. At this step, the
wave propagation problem of sharp bend structures has been
completely solved. Looking back again at the above numeri-
cal procedures to attack the difficult problem by means of
PWTMM, we find that the major numerical obstacle lies at
the determination of the exact eigenmode corresponding to
the incident waveguide mode. This step spends a large frac-
tion of computation time. Any improvement to this step by
finding more efficient numerical techniques to solve the de-
sired waveguide mode should greatly help make the
PWTMM more numerically friendly.

III. SHARP WAVEGUIDE BENDS IN SQUARE LATTICE
STRUCTURES

Our first example are the bend structures shown in Fig. 2.
The 2D square lattice 90° sharp bend structures have some-
what become a standard problem that any new approach
needs to first consider in order to demonstrate its power and
efficiency since the first study made in Ref. 9. The calculated
band diagram of the guided mode by means of the PWTMM
is plotted in Fig. 3. A supercell consisting of up to 11 unit
cells centered at the axis of the waveguide has been adopted,
and the distance between the adjacent waveguide axes is
11�2a in the y-axis direction of Fig. 1. Up to 169 plane
waves have been used to calculate the dispersion of the
guided mode. The numerical accuracy is better than 0.5%.
The fundamental TM band gap lies between frequencies
0.302�2	c /a� and 0.443�2	c /a�, where c is the light speed
in vacuum. The gray regions represent the upper and lower
edges of the photonic band gap, and they are occupied by
continuum photonic bands for the background bulk material.
Each straight waveguide in Fig. 2 supports single-mode op-
eration of guided waves extending from a frequency of �
=0.312�2	c /a� at the wave vector k=0 to the upper band

0.28

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.46

0.48

X

F
re

qu
en

cy
(ω

a/
2π

c)

Guided Mode Band

B
an

d
G

ap

Γ

FIG. 3. �Color online� Plot of the calculated band structure of
the guided modes in the waveguides shown in Fig. 3 by means of
PWTMM. The gray regions represent the lower and upper band
edges of the photonic band gap for the background bulk material of
photonic crystals.
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edge at about k=0.76�	 /a�. To check the accuracy of the
PWTMM calculations, we have also calculated the disper-
sion of the guided mode in this structure using the standard
plane-wave expansion method in combination with the su-
percell technique.20,21 A supercell consisting of 11
1 cylin-
ders and up to 2300 plane waves have been used in the
calculation. A TM band gap extends from frequency
0.302�2	c /a� to 0.443�2	c /a�. The overall dispersion of the
guided mode excellently coincides with that displayed in Fig.
3.

Following the above procedure to calculate the transmis-
sivity and reflectivity of the PC waveguide bends, we have
systematically investigated the guided mode spectra for the
waveguide bend structure. Figures 4�a� and 4�b� display the
calculation results of the spectra for the two bend structures
shown in Figs. 2�a� �called bend 1 structure� and 2�b� �called
bend 2 structure�, respectively. The two structures have the
same configuration except that the single cylinder at the cor-
ner is in a different position. The calculations are performed
on an AMD 2.2 GHz Opteron processor CPU. The computa-
tional memory required is at a relative small value as
120 Mbytes, and the calculation time for each frequency
point in the spectrum is about 3 min. Several major features
can be seen from Figs. 4�a� and 4�b�. First, for bend 1 struc-
ture, the bending efficiency is over 90% in the entire range of
the guided mode band. In the range between �
=0.338�2	c /a� and �=0.362�2	c /a� or, correspondingly,
between k=0.325�	 /a� and k=0.450�	 /a�, there appears a
high-transmissivity �above 99%� and low-reflectivity �below
1%� plateau. Second, for the bend 2 structure, the transmis-

sivity �reflectivity� almost decreases �increases� monotoni-
cally with respect to the frequency. As small as below 1%
reflectivity can be found at low frequencies close to the
waveguide cutoff frequency. However, nearly 30% reflectiv-
ity can occur for those guided modes close to the upper band
edge. Finally, the transmissivity and reflectivity sum up to
exactly unity as required by total energy flux conservation in
the entire range of the guided mode band. The overall varia-
tion profiles of the transmission and reflection spectra are in
good accordance with other later simulations by means of
theoretical approaches and models either in the time domain
or in the frequency domain,25–33 as one can find by compar-
ing Figs. 4�a� and 4�b� in the current work with Fig. 9 in Ref.
30 �the multiple multipole method�, Fig. 1 in Ref. 29 �the
Wannier-basis field expansion method�, Figs. 2�a� and 2�b� in
Ref. 33 �the finite-element method�, and Figs. 10 and 11 in
Ref. 27 �the eigenmode examination method�. For example,
at �=0.347�2	c /a�, we find the transmissivity T=99.4%
and the reflectivity R=0.06% for the bend 1 structure and the
transmissivity T=97.9% and the reflectivity R=2.1% for the
bend 2 structure. In the eigenmode examination method, we
find the transmissivity T=99.4% and the reflectivity R
=0.05% for the bend 1 structure and the transmissivity T
=97.9% and the reflectivity R=2.1% for the bend 2
structure.27 The excellent agreement between different meth-
ods is obvious. On the other hand, the numerical difficulties
encountered in the original FDTD simulations have been
overcome completely. The strong fluctuations in the trans-
mission and reflection spectra calculated by the FDTD tech-
nique near the waveguide cutoff frequency �see Fig. 2 in Ref.
9� no longer exist here. The reason is that the incident wave,
transmission wave, and reflection wave within each wave-
guide can now be discriminated very accurately in the fre-
quency domain by the PWTMM.

Our current PWTMM has several advantages. First, semi-
infinite PC waveguides are considered in the simulation. In-
trinsically, no waveguide exits in the input and output pore
exist; therefore, no reflection occurs at the exits. In compari-
son, very careful and troublesome absorbing boundary con-
ditions must be used in modified FDTD simulations.25,26 Sec-
ond, in our PWTMM, it is enough to only consider one
single unit-cell layer in eigenmode solutions for the entire
waveguide band. In comparison, in the modified FDTD
simulation, a sufficiently large simulation domain is still re-
quired to separate the input pulse and the reflection pulse in
the input domain in order to have a sufficiently fine reso-
lution of reflection spectrum. This is especially true for spec-
trum close to the waveguide cutoff frequency where strong
dispersion occurs. Third, the PWTMM automatically picks
up the coefficients of transmission and reflection waveguide
modes.

To further demonstrate the effectiveness and accuracy of
the proposed approach, we vary the length of the �10� wave-
guide section �along the �M direction�, giving the lengths
L=0.5�2a, L=1.5�2a, and L=2.5�2a. The corresponding
configuration of the waveguide bend structures is depicted in
Figs. 5�a� �bend 1 structure�, 5�b� �bend 3 structure�, and 5�c�
�bend 4 structure�. Note that these structures are in exact
correspondence to the structures studied in Fig. 4 of Ref. 9.
Figure 6 displays the calculation results of the reflection
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2�b� the waveguide bend structure shown in Fig. 2�b�.
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spectrum of these three bend structures. It is clearly seen that
reflectivity is in oscillatory change when frequency in-
creases. There appears a low-reflectivity �below 1%� in the
range between �=0.346�2	c /a� and �=0.354�2	c /a� for
bend 1, in the ranges between �=0.364�2	c /a� and �
=0.370�2	c /a� and between �=0.321�2	c /a� and �
=0.428�2	c /a� for bend 3, and in the ranges between �
=0.373�2	c /a� and �=0.377�2	c /a� and between �

=0.335�2	c /a� and �=0.420�2	c /a� for bend 4. Nearly
9%, 30%, and 20% reflectivity can be found at �
=0.419�2	c /a� for bend 1, �=0.443�2	c /a� for bend 3, and
�=0.436�2	c /a� for bend 4, respectively. The overall varia-
tion profiles of the reflection spectra are in good accordance
with the FDTD simulation results, as one can find by com-
paring Fig. 6 in this paper to Fig. 4 in Ref. 9.

IV. SHARP WAVEGUIDE BENDS IN TRIANGULAR
LATTICE STRUCTURES

We turn to waveguide bend structures created in a 2D
photonic crystal consisting of a triangular lattice of dielectric
cylinders in air. Several kinds of waveguide bends are con-
sidered, and their geometric configurations are depicted in
Figs. 7�a� �bend 1�, 7�b� �bend 2�, 7�c� �bend 3�, and 7�d�
�bend 4�. The refractive index of the rod is 3.4 and the radius
of the cylinder is r=0.20a. The 120° bend is formed by
connecting a �11� direction straight waveguide �along the �K
direction of the triangular lattice� and a �1-1� direction
straight waveguide. The length of the �10� waveguide section
is L=0.5�3a, L=0, L=1.5�3a, and L=2.5�3a. The band dia-
gram of the calculated guided mode is plotted in Fig. 8. A
supercell consisting of up to 11 unit cells centered at the axis
of the waveguide has been adopted, which means that the
primitive lattice vector of this supercell is a�2= �11,0�a and
a�3= � 1

2 , �
�3
2 �a for the left-side and right-side waveguide ar-

L

L

L

(a) (b)

(c)

FIG. 5. Three different geometries of the 90° waveguide bend
structure introduced into a square lattice of dielectric cylinders in
air. The cylinder has a refractive index of 3.4 and a radius of r
=0.18a. The photonic crystal waveguide bends are formed by two
semi-infinite photonic crystals separated by a photonic crystal slab
of the �10� waveguide section whose length is L.
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FIG. 6. �Color online� Calculated reflectivity spectrum for the
waveguide bend structures shown in Figs. 5�a�–5�c�.
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FIG. 7. Four different geometries of the 120° waveguide bend
structure introduced into a triangle lattice of dielectric cylinders in
air. The cylinder has a refractive index of 3.4 and a radius of r
=0.20a. The photonic crystal waveguide bends are formed by two
semi-infinite photonic crystals face to face or by two semi-infinite
photonic crystals separated by a photonic crystal slab. The length of
the �10� waveguide section is L.
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rays, and the distance between adjacent waveguide axes is
11a in the y-axis direction. Up to 169 plane waves have been
used to calculate the dispersion of the guided mode. A delib-
erate extrapolation technique is also used to find the exact
solution of the waveguide mode under the oblique wave in-
cidence configuration. The fundamental TM band gap lies
between frequencies 0.279�2	c /a� and 0.451�2	c /a�. The
gray regions represent the upper and lower edges of the pho-
tonic band gap, and they are occupied by continuum photo-
nic bands for the background bulk material. Each straight
waveguide supports the single-mode operation of guided
waves extending from a frequency of �=0.341�2	c /a� to
�=0.446�2	c /a�. The structure of the four waveguide bends
each is well simulated by two semi-infinite PC structures
connected with the sandwiched sharp waveguide bend sec-
tion with thickness L. The PWTMM calculation results show
that in these waveguides the summation of the transmission
and reflection energy powers exactly equals the input energy
power in the entire waveguide band. No artificial fluctuation
due to numerical instability exists anywhere even at the
waveguide cutoff frequency. Figure 9 displays the calcula-
tion results of reflection spectra for bend 1, bend 2, bend 3,

and bend 4 structures. It is clearly seen that in the range
between �=0.341�2	c /a� and �=0.358�2	c /a� for bend 1,
between �=0.341�2	c /a� and �=0.352�2	c /a� for bend 2,
between �=0.341�2	c /a� and �=0.362�2	c /a� for bend 3,
and between �=0.341�2	c /a� and �=0.355�2	c /a� for
bend 4, reflectivity rapidly decreases when frequency in-
creases. However, in the range between �=0.366�2	c /a�
and �=0.446�2	c /a� for bend 1, between �
=0.391�2	c /a� and �=0.446�2	c /a� for bend 2, between
�=0.374�2	c /a� and �=0.446�2	c /a� for bend 3, and be-
tween �=0.352�2	c /a� and �=0.446�2	c /a� for bend 4,
reflectivity increases when frequency increases. There ap-
pears a relatively high-transmissivity �above 95%� and rela-
tively low-reflectivity �below 5%� plateau in the range be-
tween �=0.359�2	c /a� and �=0.440�2	c /a� for the bend 1
structure, in the range between �=0.353�2	c /a� and �
=0.426�2	c /a� for the bend 2 structure, in the range be-
tween �=0.362�2	c /a� and �=0.429�2	c /a� for the bend 3
structure, and in the range between �=0.356�2	c /a� and
�=0.439�2	c /a� for the bend 4 structure.

V. CONSTRUCTION OF SUPERCELLS IN GENERAL PC
WAVEGUIDE BENDS

In the above sections, we discuss how to solve the EM
wave propagation problem of 2D PC waveguide bends in the
framework of PWTMM. The key is the usage of a supercell
technique that converts the original aperiodic structure prob-
lem into a periodic structure problem. For the 90° sharp
waveguide bend in a square-lattice photonic crystal and the
120° waveguide bend in a triangular-lattice photonic crystal,
one can find that the input and output waveguides both ex-
tend along a high-symmetry crystalline direction. We have
selected a supercell configuration such that the lateral primi-
tive lattice vector a�2 is along a direction that bisects the angle
between the input and output waveguide axes. Since a�2 de-
termines the 1D supercell grating period and the wave propa-
gation direction, which should be perpendicular to a�2, the
selection of an appropriate quantity of a�2 is very important.
In practical simulations, for a general PC waveguide bend
structure with an angle of � as depicted in Fig. 10, the su-
percell size a2= �a�2� should be as small as possible in order to
reduce the computation burden. However, the coupling be-
tween adjacent supercells should be as small as possible,
which requires a large supercell size. As the coupling scales
with the axis-to-axis distance of adjacent waveguides, which
is just �a�2�sin��1� and �a�2�sin��2� for the PC1 and PC2, re-
spectively, it turns out that at �1=�2=� /2, the coupling is
generally smallest for a given size of supercell for both the
two PCs. This simple mathematics indicates that for a gen-
eral PC waveguide bend with an angle �, the optimum con-
figuration of the supercell should be selected along the direc-
tion bisecting the angle between the input and output
waveguide. In fact, such a rule has been used in studying the
2D PC waveguide bend structures in Secs. II–IV.

The above idea of constructing an appropriate supercell
for a general PC waveguide can be directly extended to 3D
PC waveguide bend structures. Since the waveguide now
confines EM waves on two directions in the cross section
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FIG. 8. �Color online� Plot of the calculated band structure of
the guided modes in the waveguides shown in Fig. 8 by means of
the PWTMM. The gray regions represent the lower and upper band
edges of the photonic band gap for the background bulk material of
photonic crystals.
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FIG. 9. �Color online� Calculated reflectivity spectrum for the
waveguide bend structure shown in Figs. 7�a�–7�d�.
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plane, we should construct a 2D periodic waveguide array in
order to describe the wave propagation problem of the 3D
PC waveguide bend. In this manner, we encounter the wave
scattering problem taking place at the interface between two
semi-infinite 3D PC structures that model the input and out-
put waveguides. The incident wave propagates along the
stacking direction of 2D waveguide array gratings. The 3D
problem can also be readily solved by PWTMM.34–37 The
construction of the supercell should follow the same prin-
ciple as in the 2D PC waveguide bend situation. One primi-
tive lattice vector of the 2D supercell a�2 should be also cho-
sen to lie within the plane �noted as M� formed by the input
and output waveguides and extend along the direction bisect-
ing the angle between the two waveguides. The other primi-
tive lattice vector a�1 can be simply set to be perpendicular to
plane M. Obviously, a�1�a�2, and we have a square-lattice 2D
gratings to describe the 3D PC waveguide. The off-plane
primitive vector a�3 depends on the specific geometric struc-
ture of the considered 3D PC waveguides.

VI. CONCLUSIONS

In summary, we have developed a theoretical approach
based on the PWTMM to investigate the propagation of EM
waves through sharp bends of PC waveguides. In this
method, artificial periodic waveguide arrays are used to
model the original single waveguide. With a sufficiently
large separation between adjacent waveguides, the structure
does not bring any impact to the original wave propagation
problem. The incorporation of this supercell technique en-
ables us to model the original PC waveguide bend by two

semi-infinite photonic crystal waveguide arrays face to face
or by two semi-infinite photonic crystal waveguide arrays
separated by a sandwiched slab of bend region. As a result,
the original wave propagation problem is converted into the
usual scattering problem of waveguide modes at the interface
of two semi-infinite photonic crystal structures that can be
readily solved by the PWTMM in combination with the su-
percell technique.

The proposed method completely removes the difficulty
of separating the input, reflection, and transmission pulses as
routinely encountered in the usual FDTD simulation for a
waveguide bend structure of finite arm lengths. The trans-
mission and reflection waveguide modes can be automati-
cally extracted from the solution of the eigenmode scattering
problem. The resulting transmission and reflection spectra of
waveguide modes strictly satisfy the energy power conserva-
tion and are free from any numerical instability induced ar-
tificial fluctuation in the entire waveguide band. The diffi-
culty is common in the usual FDTD simulation, particularly
at the frequency close to the waveguide cutoff frequency, and
can only be removed by adopting very deliberate absorbing
boundary conditions. The proposed PWTMM is very nu-
merically friendly because it only needs to calculate the
transfer matrix for a single unit-cell layer and solve the cor-
responding eigenmodes.

We have employed the developed PWTMM to investigate
several examples of waveguide bend structures created in a
2D photonic crystal made from a square or triangle lattice of
dielectric cylinders in air under the TM-mode excitation.
These standard structures have been investigated extensively
by different methods and are also taken as examples to dem-
onstrate the principle and power of the current PWTMM.
The calculated spectra by the PWTMM are in good agree-
ment with existing results reported in the literatures. It indi-
cates that the PWTMM can efficiently and accurately extract
the intrinsic transmission and reflection spectra of input
waveguide modes in a sharp PC waveguide bend. Although
in this work we only focus on the TM polarization state for
2D PC structures, the PWTMM can directly extend to handle
3D PC bend structures with any polarization states because
the basic formulation has been proven to be effective and
efficient for these complex structures in our previous
works.34,36 Because the domain size of the bend system used
in the PWTMM has been reduced to the smallest one �single
unit-cell layer� and since reliable transmission and reflection
spectra information can be extracted from such small-domain
computations, we expect that the method can be used to de-
sign optimal waveguide bend structures in different photonic
crystal structures of arbitrary geometries.
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FIG. 10. Schematics showing the construction of an optimal
supercell that allows for a minimum numerical computation burden
by PWTMM. In the optimal configuration, the coupling between
two adjacent waveguides, which is determined by the inter-
waveguide distance d1 and d2, should be as small as possible for
both input and output waveguides under a given value of the super-
cell size a2. This requires that the angle satisfies �1=�2=� /2, where
� is the angle between the input and output waveguides.
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